Плотность утеплителя : что это и какую выбрать

Апр 29, 2020 Ремонт

Плотность утеплителя : что это и какую выбрать

При строительстве домов в средней полосе России и на севере страны очень важно учитывать возможные теплопотери через ограждающие конструкции. Они влияют на количество энергии, необходимой для обогрева помещения в зимний период. Чтобы избежать повышенной теплоотдачи, специалисты применяют различные утеплители, и ниже представлены их основные характеристики.

Значение плотности при выборе утеплителя

Плотность утеплителя (удельный вес) – важный параметр при его выборе, он определяется массой вещества на кубический метр материала (как правило, килограмм).

Характеристики, на которые можно повлиять, выбирая плотность теплоизоляции:

  • Чем плотнее связаны элементы основы – тем прочнее теплоизолятор. В конструкциях, на которые действуют значительные нагрузки, рекомендуется использовать более плотный материал (от 150 кг/мЗ). Это поможет избежать деформаций и повреждения теплоизоляции, а также продлит срок ее службы.
  • Показатель уровня плотности теплоизоляционного материала оказывает влияние на теплопроводность. Воздух обладает хорошими теплоизолирующими свойствами. В минераловатных теплоизоляторах большое количество волокон с пузырьками воздуха (в промежутках между ними), если увеличить плотность минваты (спрессовав ее), то количество пузырьков уменьшится, теплопроводность, как следствие, снизится.

  • Значение удельного веса влияет на уровень шумоподавления. Снижение воздухопроницаемости влечет за собой уменьшение звукопропускающих качеств.
  • При повышении плотности увеличивается масса теплоизоляторов, и работать с ними становится затруднительно.
  • Способ монтажа также определяется значением удельного веса. На стены предпочтительно крепить более плотные объекты, на решетчатые каркасные конструкции – более легкие. На теплоизолятор с низким показателем плотности (пенопласт, пеноизол, минеральная вата, пеноплекс, полистирол) необходимо крепление дополнительной защиты.
  • Стоимость изделия также может повышаться прямопропорционально с увеличением удельного веса.

Влияние плотности на проводимость тепла

Как правило, потребитель чаще обращает внимание на эксплуатационные характеристики утеплителя, нежели на физические свойства вроде плотности. А учитывать ее стоит обязательно, поскольку она несет важную информацию.

Любой теплоизоляционный материал содержит в составе воздух либо в разреженном, либо в обычном состоянии. Существует зависимость: чем меньшее количество паров есть внутри утеплителя и чем хуже он изолирован от взаимодействия с наружным воздухом, тем выше будет величина коэффициента теплопроводности. А чем больше последняя, тем хуже материал удерживает тепло.

Шерсть

Изоляция из шерсти производится из волокон овечьей шерсти, которые либо механически удерживаются вместе, либо склеиваются, используя от 5% до 15% повторно используемого полиэфирного клея для образования изоляционных валиков и рулонов. Овцы больше не выращиваются прежде всего для их шерсти; однако их необходимо ежегодно обрезать для защиты здоровья животного. Шерсть, используемая для производства изоляции, — это шерсть, отброшенная как отходы других отраслей промышленности из-за ее цвета или качества.

Состав

Каменная вата имеет волокнистую структуру, по составу напоминающая базальт. Он считается натуральным природным материалом, на 80-й процент состоит из земной коры, а сама вата производится из расплавов вулканических пород.

Бальзаковское волокно производится в заводских условиях, но его состав также схож с химической структурой горных пород. Также содержатся песок, сода, известняки, бура и доломит. В готовом виде материал имеет внушительные размеры и пронизан воздухом насквозь. Для хранения и транспортирования, минвата спрессовывается до шестикратного состояния.

Многие производители стараются улучшить качество изделия, внося изменения в состав и процесс производства. Для повышения жёсткости, плиты подвергаются прошиванию, пропитываются битумом и фенолами с добавлением асбеста. Если в составе имеются дополнительные вещества, это может изменить характеристики изделия. Битум предотвращает от поражений насекомыми и грибком, защищает изделие от влаги и обеспечивает дополнительную прочность.

ГОСТ

Официальный стандарт распространяется на каменную вату, изготавливаемую из веществ горных пород габбро-базальтовой группы, а также их идентичных веществ, осадочных пород, вулканических, металлургических остатков, производственных силикатных шлаков, сплавов предназначенных для производства теплоизоляционных, звукоизоляционных и звукопоглощающих материалов.

Каменная вата может использоваться в качестве теплоизоляционного вещества в строительной индустрии и промышленном производстве для отделки поверхностей с температурным режимом от -180 С до +700 С.

Плотность пенопласта

Пенопласт разделяют на следующие виды:

  • ПСБ-С-15 до 15 кг/м³;
  • ПСБ-С-25 15-25 кг/м³;
  • ПСБ-С-35 25-35 кг/м³;
  • ПСБ-С-50 35-50 кг/м³.

ПСБ расшифровывается как беспрессовый пенополистирол, а буква “С” означает, что теплоизоляционный материал самозатухающий. Цифры определяют верхний предел плотности. Чем плотнее пенопласт, тем большую нагрузку он способен выдержать и тем более устойчив к механическим повреждениям.

Классификация теплоизолирующих стройматериалов

Существуют различные классификации теплоизоляционных стройматериалов. Наиболее полезным является деление их по удельному весу и материалу изготовления.

По удельному весу

Выделяют:

  • Сверхлегкие вещества. К ним относятся пенопласт и пенополистирол, используемые для теплоизоляции внутренних перегородок и стен зданий.
  • Легкие. В эту категорию входят минеральные ваты. Их преимущества: относительно малый вес и теплопроводность.
  • Средней весовой категории. Это: Пеностекло, блоки и плиты из пенополистирола и стекловаты, а также другие виды плотного утеплителя. Помимо хороших теплоизолирующих свойств, они также применяются в качестве звукоизоляции, однако, на территории Российской Федерации не получили широкого применения.
  • Тяжёлые. К этой категории относятся спрессованные под высоким давлением минераловатные маты. Обладают высокой износостойкостью, влагостойкостью, хорошо удерживают тепло.

По материалу изготовления

Выделяют следующие виды материалов:

  • Минеральные ваты. Отличаются универсальностью в использовании. Плотность минеральной ваты находится в пределах от 30 до 200 кг/мЗ. Показатель зависит от толщины и количества волокон вещества.

Обратите внимание! Мокрая минвата полностью теряет свои теплоизолирующие свойства.

Минераловата выпускается в виде матов, войлока и минплиты различной плотности.

Таблица 1: Плотность минеральной ваты в кг/м3:

Виды стройматериалов Плотность минераловатного утеплителя в кг/м3 Теплопроводность, Вт/м0С Предельные температуры Горючесть Применение При изготовлении применяют
Маты 50…85 0,046 700 НГ Теплоизоляция труб
Легкие плиты 20…40 0,036 400 НГ Синтетические смолы
Мягкие плиты 50…75 0,036 400 НГ
Полужесткие плиты 75…125 0,0326 400 НГ Термоизоляция пола Смолы, битум
Жесткие плиты 175…225 0,043 100 Г1 Термоизоляция пола, стен
Цилиндры 200 0,046 400 НГ
Рыхлая вата 30 0,05 600 НГ

Таблица 2: Классификация минваты по сортам:

Марка минваты Плотность
П-75 75
П-125 125 (110,120, 130)
ПЖ-175 Повышенная плотность
ПЖ-200 200
  • Вспененный полиэтилен – имеет стандартную плотность до 25 кг на кубический метр, толщину 8-10 мм, но со слоем фольги достигает 55 кг на мЗ. Этот дополнительный слой способен повышать его теплоэффективность благодаря отражению тепла.

  • Пенопласт. Пределы плотности 80–160, у пенополистирола – 28–35 (один из самых легких материалов данной группы).

  • Пеноизол имеет удельный вес: 10 кг/мЗ, производится в жидком виде и распыляется на рабочую поверхность. Обязательна дополнительная защита застывшего пульверизованного слоя при помощи штукатурки (например).

  • Пеностекло – достаточно тяжелый материал – 200–400 кг/м3, но существуют и облегченные версии (100 – 200 кг/м3). Чаще всего применяется для отделки фасадов зданий.

Разновидности минеральной ваты

Названием «минеральная вата» объединены три разновидности. Их различают по сырью, из которого материал производится.

  1. Стекловата. Ее основу составляют волокна длиной до 50 мм, их толщина не более 15 микрон. Это самая дешевая разновидность минваты. Стеклянные нити придают утеплителю упругость и прочность. Но вот работать со стекловатой неудобно: это хрупкий материал, стеклянные волокна легко ломаются, попадают на кожу, в глаза и дыхательные пути. Если вы монтируете стекловату своими руками, обязательно используйте защитные средства, включая очки.
  2. Шлаковата. Гигроскопичный материал в связи с чем не может быть использован во влажных помещениях, для отделки водопроводных и канализационных труб, для утепления фасада домов. Материал изготовления – отходы доменного производства, волокна имеют длину около 16 мм, толщину не более 12 микрон.
  3. Каменная вата. Это самый безопасный материал, так как каменные нити прочны и не ломаются. Размеры волокон – длина 16 мм, толщина до 12 микрон.

Разница состоит в плотности и прочности материала. Также у стекло-, шлако- и каменной ваты разные показатели гигроскопичности, теплопроводности, пожарной безопасности.

Виды утеплителей

В настоящее время любой строительный супермаркет предложит большой выбор утеплителей, отличающихся материалом изготовления, характеристиками, качеством, стоимостью и производителем. Но во всем этом многообразии необходимо выбрать именно тот, который больше всего подходит для утепления конкретной поверхности. Остановимся на основных из них.

Наименование

Характеристики

Фото

Утеплители с органической основой Пользуется большим спросом, изготавливается из отходов деревообработки и сельского хозяйства (естественное сырье) с добавлением цемента и некоторых видов пластика. Обладает высокой пожаробезопасностью, не боится влаги, выдерживает температуру до 150 градусов.
Арболитовый При его производстве используются мелкие опилки, стружка, нарезанная солома или камыш. Используются химические добавки или цемент. Процесс изготовления заканчивается обработкой минерализатором.
ППВХ (пенополивинилхлоридный) В его составе имеются поливинилхлоридные смолы, которые в процессе производства приобретают пенистую структуру. Он может быть как твердым, так и мягким. Используется для утепления фасада, стен, кровли и иной поверхности.
ДСП В основе лежит мелкая стружка (90% от общего объема) и 10% — смолы синтетические и антисептические вещества.
ДВИП Идентичен с ДСП, но при производстве используются обрезки стеблей соломы, древесные отходы, стебли кукурузы. В качестве связующего средства применяются синтетические смолы с добавками антипирены, антисептика, гидрофобизурующих веществ.
ППУ (пенополиуретан) В состав входят полиэфир, вода, диизоцианат, эмульгатор. Обладает отменными теплоизоляционными, звукоизоляционными, влагоотталкивающими свойствами.
ППС/пенопласт В состав входит воздух (98%) и полистирол (2%). Предполагается небольшое количество антипиренов.
Вспененный полиэтилен Пористая структура, с хорошими пароизоляционными свойствами, плохо проводит шум.
Фибриолит В состав входит древесная стружка, цемент или магнезиальные компоненты. Имеет вид плит. Стоек к химическим и биологическим агрессивным воздействиям, влагостоек, не пропускает шум.
Минеральная вата Бывает двух видов: каменной и шлаковой. Основной состав: диабаз, доломит, базальт, известняк, связанные компонентами, содержащими фенол или карбамид.
Стекловата В изготовлении используются отходы стекольной промышленности. Обладает достаточной упругостью и прочностью, звукоизоляцией, не боится открытого пламени, не выделяет вредные вещества при высоких температурах.
Керамовата Основу составляют цирконий, алюминий, кремний. Не боится высоких температур.

Область применения утеплителей с разными пределами плотности вещества Таблица 3: Сферы использования теплоизоляторов.

Плотность утеплителя, кг/мЗ. Область применения.
До 100 кг/мЗ:
11–35 Утепление кровли и крыш.
35–75 Теплоизоляция стен и перегородок внутри жилых помещений. Широко распространены.
75–100 Снижение теплопотерь различного рода труб (нефтепроводов, теплотрасс, вентиляции).
От 100 до 150 кг/мЗ:
100–125 Утепление вентилируемых и сайдинг фасадов зданий.
125–150 Теплоизоляция железобетонных стен, кладки из облицовочного кирпича, перекрытий между этажами.
От 150 кг/мЗ
150–175 Обшивка несущих конструкции зданий.
175–225 Черновой слой покрытия пола.

Применение

1. Монтаж теплоизолирующего покрытия в плоских кровлях и многоуровневых слоях.

2. Теплоизоляция трубопроводных коммуникаций, резервуаров, газопроводов и технического оборудования во многих производственных отраслях.

3. Утеплитель в 3 — слойных сэндвич панелях, а также бетонных или железобетонных материалах.

4. Ненагруженная изоляция в ограждающих строениях.

5. Наружное утепление мокрого типа.

6. Теплоизоляция вентилируемых фасадных конструкций.

7. Заполнитель входных дверей.

Принципы подбора утепления пола и стен помещения

Утепление стен

Из приведенной выше таблицы, следует, что подбор плотности утеплителя для стен зависит от:

  • Структуры и материала конструкции;
  • Расположения утеплителя (внутри или снаружи).

Выбор зависит и от вида материала, которым проводится облицовка. Под сайдинг можно использовать легкое сырье (40–90 кг/м3). Масса теплоизолятора, помещенного под штукатурку должна колебаться в пределах: 140–160 кг/мЗ.

Чем выше здание, тем больше плотность принимаемого теплоизолятора.

При утеплении деревянных стен снаружи, необходимо подбирать материал, близкий по своим свойствам к древесине: базальт, стекловолокно. Кирпичные стены менее требовательны к типу утепления.

На заметку! Предпочтительный материал для утепления стен – базальтовая вата, так как она выделяется своей экологичностью и пожаробезопасностью.

Для внешнего утепления можно выбрать сэндвич-панели и материалы с неоднородной жесткостью. Они выполняются в 2 слоя: мягкий – крепится к зданию и жесткий – наружный – на него наносится штукатурка.

Мансардные стены утепляются более легкими материалами.

Обратите внимание! При выборе теплоизолятора для стен необходимо исключить существенное увеличение нагрузки.

Какой плотности должен быть утеплитель для пола

Он должен обладать высокой прочностью, поэтому принимается повышенный удельный вес (от 90 кг/мЗ). В области лаг возможен вариант с меньшими показателями, так как нагрузка на него практически отсутствует.

Для пола предпочтительнее всего использовать экструдированный пенополистирол. Минеральная вата применяется только в местах расположения лаг.

На заметку! При плотности утеплителя до 150 кг/мЗ следует смонтировать защитный слой после его укладки, а также уделять внимание горючести и воспламеняемости материала.

Основные критерии и строительные нормы

Чем меньше плотность минваты, тем ниже теплопроводность и выше звукоизоляция

Сопротивление тепловой передаче стен строящихся зданий регламентируется действующими нормативами СНБ 2.04.01 (глава 5.1), где указана информация для всех типов стен и перекрытий. Помимо этого, для наружных ограждений и покрытий обязательно рассчитываются параметры по воздушной и паровой проницаемости. В многослойных защитных конструкциях используемые материалы рассчитываются как единое целое, согласующееся по основным техническим показателям.

Подбор изделий, которыми предполагается утеплять стены, предваряют теплотехнические расчеты. По их результатам определяется тип нужного материала и его конкретная марка. При использовании синтетических веществ (полистирола или полиэтилена) учитывается, что они непроницаемы не только для воды, но и для пара. Поэтому при их выборе потребуется предусмотреть специальные меры по созданию хорошего воздухообмена в помещениях.

К материалам, сформованным в виде плит (включая стекловату), предъявляются особые требования:

  • геометрия выбирается так, чтобы углы и грани заготовок не имели явно различимых разрушений и заметных неровностей;
  • структура плит – плотная, наличие плохо связанных волокон и выпадающих гранул считается совершенно недопустимым;
  • поверхности с обеих сторон делаются шершавыми, либо одна из них изготавливается со сложной фактурой.

Выполнение последнего требования гарантирует хорошую адгезию с утепляемыми стенами.

Коэффициент сопротивления теплопередаче

Когда с областью применения каждого теплоизоляционного материала всё понятно, определяют наиболее эффективный из возможных вариантов для данной конструкции.

На потери тепла через конструктивные элементы зданий влияет толщина используемого материала и его коэффициент сопротивления теплопередаче — способность пропускать теплоту. Чем меньше коэффициент теплопроводности и толще слой строительного материала, тем лучше сохраняется тепло.

Для наглядного представления необходимой толщины стен из однородного материала, соответствующей требованию по сопротивлению теплопередаче, мы произвели расчет, который учитывает теплотехнические характеристики применяемых строительных материалов. Полученные результаты смотрите на графике:

  • Пенополистирол
  • Минеральная вата
  • Газосиликатный блок
  • Массив дерева
  • Керамзитобетон
  • Кирпич

Для выбора наиболее экономичного варианта, стоит обратить внимание на коэффициент теплопроводности строительных материалов в толще ограждающих конструкций: наружных стен, плоской или скатной кровли, мансардной крыши, чердачных перекрытий, окон, фундаментов, деревянных и бетонных полов (смотрите таблицу 2). Чем ниже этот показатель, тем меньшая толщина теплоизоляционного слоя потребуется.

Таблица 2 – коэффициент теплопроводности строительных материалов

Таблица 3 — Сравнение характеристик утеплителей по теплопроводности

*значения коэффициентов приняты из приложения А ТКП 45-2.04-43-2006, технических характеристик от производителей теплоизоляции;

**в жилых домах наружные ограждающие конструкции относятся к условиям эксплуатации Б, а внутренние стены, перегородки, чердачные и надподвальные перекрытия − к режиму эксплуатации А.

Теплотехнический расчёт толщины теплоизоляции и проверку на не образование конденсата в толще конструкции выполняют проектировщики индивидуально для каждого случая по утвержденным нормативам для Беларуси. Методика и справочные значения приведены в ТКП 45-2.04-43-2006 с действующими изменениями и дополнениями.

Сравнительные характеристики утеплителей

Для того, чтобы сделать правильный выбор, необходимо понимать в чем отличие одного утеплителя от другого.

Чтобы приобрести нужный вам теплоизоляционный материал, необходимо обращать внимание на такие факторы:

  • куда он будет использоваться (для внешних или внутренних работ);
  • вертикально или горизонтально он будет укладываться;
  • предварительная нагрузка на материал;
  • необходимость в звукоизоляции;
  • погодные условия в конкретном регионе.

Большое значение имеет и функциональность утепляемого строения. Например, для построек хозяйственного назначения предпочтение стоит отдать материалу с существенной плотностью и невозможностью повреждения мелкими грызунами или иными вредителями.

Какие данные нужны для расчета толщины утеплителя?

Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.

Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.

Название материала

Теплопроводность, Вт/м*К

Бетон

1,51

Кирпич силикатный

0,7

Пенобетон

0,29

Дерево

0,18

ДСП

0,15

Минеральная вата

0,07-0,048

Экструдированный пенополистирол

0,036

Пенополиуретан

0,041-0,02

Пенополистирол

0,05-0,038

Пеностекло

0,11

Теплосопротивление материала ® является постоянной величиной, его определяют как отношение разности температур на краях утеплителя к силе проходящего через материал теплового протока. Формула расчета коэффициента: R=d/k, где d — толщина материала, k — теплопроводность. Чем выше полученное значение, тем эффективней теплоизоляция.

Расчет теплоизоляции стен

Способность ограждений оказывать сопротивление потоку тепла, проходящему из помещения наружу, характеризуется сопротивлением теплопередачи R0.

Требуемая толщина утеплителя наружной стены вычисляется по формуле:

αут=(R0тр/r-0,16-δ/λ)·λут, (1)

где

  • αут — толщина утеплителя, м
  • R0тр — нормируемое сопротивление теплопередаче наружной стены, м2· °С/Вт;
    (см. таблица 2)
  • δ — толщина несущей части стены, м
  • λ — коэффициент теплопроводности материала несущей части стены, Вт/(м · °С) (см. таблица 1)
  • λут— коэффициент теплопроводности утеплителя, Вт/(м · °С) (см. таблица 1)
  • r — коэффициент теплотехнической однородности
    (для штукатурного фасада r=0,9; для слоистой кладки r=0,8)

Для многослойных конструкций в формуле (1) δ/λ следует заменить на сумму

δ1/λ1+δ2/λ2 +… + δn/λn=Σ δi/λi,

где

δi — толщина отдельного слоя многослойной стены;

λi — коэффициент теплопроводности материала отдельного слоя многослойной стены.

При выполнении теплотехнического расчета системы утепления с воздушным зазором термическое сопротивление наружного облицовочного слоя и воздушного зазора не учитываются.

Таблица 1

Бетоны
Железобетон 2500 1,69 1,92 2,04
Газобетон 300 0,07 0,08 0,09
400 0,10 0,11 0,12
500 0,12 0,14 0,15
600 0,14 0,17 0,18
700 0,17 0,20 0,21
Кладка из кирпича
Глиняного обыкновенного на цементно-песчаном растворе 1800 0,56 0,70 0,81
Силикатного на цементно-песчаном растворе 1600 0,70 0,76 0,87
Керамического пустотного плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе 1600 0,47 0,58 0,64
Керамического пустотного плотностью 1000 кг/м3 (брутто) на цементно-песчаном растворе 1200 0,35 0,47 0,52
Силикатного одиннадцати-пустотного на цементно-песчаном растворе 1500 0,64 0,70 0,81
Силикатного четырнадцати-пустотного на цементно-песчаном растворе 1400 0,52 0,64 0,76
Дерево
Сосна и ель поперек волокон 500 0,09 0,14 0,18
Сосна и ель вдоль волокон 500 0,18 0,29 0,35
Дуб поперек волокон 700 0,10 0,18 0,23
Дуб вдоль волокон 700 0,23 0,35 0,41
Утеплитель
Каменная вата 130-145 0,038 0,040 0,042
Пенополистирол 15-25 0,039 0,041 0,042
Экструдированный пенополистирол 25-35 0,030 0,031 0,032

*λА или λБ принимается к расчету в зависимости от города строительства (см. таблица 2).

Таблица 2

Город РФУсловияэксплуатацииНормируемое сопротивление теплопередаче наружных стенR0тр, м2 °С/ВтТолщина утеплителя**,мм

Архангельск Б 3,56 140
Астрахань А 2,64 90
Анадырь Б 4,72 200
Барнаул А 3,54 130
Белгород А 2,86 100
Благовещенск Б 3,74 150
Брянск Б 3,00 120
Волгоград А 2,78 100
Вологда Б 3,35 130
Воронеж А 3,0 110
Владимир Б 3,3 130
Владивосток Б 3,04 120
Владикавказ А 2,59 90
Грозный А 2,47 80
Екатеринбург А 3,49 130
Иваново Б 3,23 130
Игарка Б 4,78 200
Иркутск А 3,79 140
Ижевск Б 3,39 130
Йошкар-Ола Б 3,33 130
Казань Б 3,30 130
Калининград Б 2,68 100
Калуга Б 3,08 120
Кемерово А 3,69 140
Вятка Б 3,45 140
Кострома Б 3,25 130
Краснодар А 2,34 80
Красноярск А 3,62 140
Курган А 3,49 130
Курск Б 2,95 110
Кызыл А 4,16 160
Липецк А 3,06 110
Магадан Б 4,13 170
Махачкала А 2,30 80
Москва Б 3,13 120
Мурманск Б 3,63 150
Нальчик А 2,54 90
Нижний Новгород Б 3,21 130
Новгород Б 3,13 120
Новосибирск А 3,71 140
Омск А 3,60 130
Оренбург А 3,26 120
Орел Б 3,03 120
Пенза А 3,17 120
Пермь Б 3,48 140
Петрозаводск Б 3,34 130
Петропавловск-Камчатский Б 3,07 120
Псков Б 3,0 120
Ростов-на-Дону А 2,63 90
Рязань Б 3,11 120
Самара Б 3,19 130
Санкт-Петербург Б 3,08 120
Саранск А 3,19 120
Саратов А 3,07 110
Салехард Б 4,61 190
Смоленск Б 3,09 120
Ставрополь А 2,52 90
Сыктывкар Б 3,61 150
Тамбов А 3,07 110
Тверь Б 3,15 120
Томск Б 3,75 150
Тула Б 3,07 120
Тюмень А 3,54 130
Ульяновск А 3,29 120
Улан-Удэ А 3,92 150
Уфа А 3,33 120
Хабаровск Б 3,56 140
Чебоксары Б 3,29 130
Челябинск А 3,43 130
Чита А 4,06 160
Элиста А 2,68 90
Южно-Сахалинск Б 3,36 130
Якутск А 5,04 200
Ярославль Б 3,26 130

**толщина теплоизоляции стен определялась по следующим конструктивным решениям:

несущая часть стен выполнена из полнотелого керамического кирпича толщиной 380 мм, а наружный защитно-декоративный слой из штукатурки толщиной до 8 мм. Стена с внутренней стороны имеет отделочный штукатурный слой толщиной 20 мм. Коэффициент теплотехнической однородности стен — 0,9. Коэффициенты теплопроводности утеплителя: λА=0,040</strong>; λБ=0,042.

Какая должна быть толщина утеплителя: пенопласта, минваты, пенополистерола

Толщина теплоизоляции зависит от:

  • температуры наружного воздуха зимой в месте строительства;
  • состава утепляемой конструкции: какие материалы использованы для несущего и отделочных слоёв, толщины и теплопроводности каждого слоя;
  • вида и плотности выбранного утеплителя.

Вентиляционный зазор

Паропроницаемость стены – характеристика, которая показывает наличие естественной вентиляции. Если паропроницаемость низкая или отсутствует, то тогда есть необходимость сооружения принудительной вытяжки. Стенам из натуральных материалов свойственна естественная паропропускная способность. Говорят, что они «дышат». У многих искусственных материалов, пенопластовых утеплителей, паропроницаемости нет. Поэтому они блокируют газообмен через стену.


Устройство вентзазора в каркасном доме.

Стена, сделанная только из минеральной ваты, имеет высокую паропроводящую способность. При этом в утеплителе скапливается конденсат, который нарушает теплопроводные свойства утеплителя. Для того чтобы стена не пропускала холод, необходимо правильно построить пирог стены каркасного дома. Для защиты от паров из дома делается пароизоляция, снаружи монтируется мембранная пленка и предусматривается наличие вентиляционного зазора.

Хороший каркасный дом утепляется минеральной ватой с обязательным устройством вентиляционной щели между утеплителем и наружной стеновой обшивкой. При этом снаружи утеплитель закрывают пароизолирующей мембраной, которая предупреждает проникновение пара в утеплитель. Но не препятствует выходу возможного пара наружу, из утепляющего слоя. Таким образом, вентзазор в каркасном доме является щелью, через который влажный пар может выйти из стены.

Также вентзазор предупреждает конденсат на внутренней стороне облицовки.

Необходимость в использовании вентзазора

  • Если минеральный утеплитель теряет свои теплосберегающие свойства при намокании.
  • Если наружная отделка выполнена из материала, который не пропускает пар. В таком случае каркасный дом без вентзазора будет конденсировать влагу с внутренней стороны сайдинга.

Толщина вентиляционного пространства между утеплителем и наружной обшивкой определяется его расположением, и длиной стены, чем длиннее, тем шире должен быть вентзазор. Ширина вентзазора в каркасном доме снаружи составляет минимум 25 мм. При большой площади стены она должна составлять минимум 50 мм.


Правильное устройство.

Иногда в целях удешевления строения используют утепление каркасного дома пеноплексом. Этот утеплитель является воздухонепроницаемым, поэтому не требует наличия воздушного вентиляционного зазора. Нужен ли вентзазор в каркасном доме?

  • Материал утеплителя паронепроницаем.
  • Наружная стеновая отделка пропускает пар. Минвату можно закрывать штукатуркой без вентзазора, если штукатурная смесь имеет высокую паропроницаемость, выше, чем у минваты.

В таком случае, толщина утепления стен каркасного дома не требует установки вентиляционного зазора внутри и снаружи.

Показатель теплоизоляции и шумопоглощения

Основной характеристикой любого утеплителя является коэффициент теплопроводности. Если взять все типы минваты, этот показатель будет находиться в пределах 0,04 Втм*К. Именно это и является определяющим параметром для утеплителя. Так, например 10 см минваты утепляют также как 25 см дерева или 120 см кирпича.

Причина низкого коэффициента теплопроводности – строение минераловатной плиты. Стекловолокно, входящее в состав, делает ее схожим с пуховым одеялом. Это позволяет при небольшой толщине иметь высокие показатели теплозащиты.

Рейтинг лучших утеплителей для дома

Номинация место наименование товара цена
Лучшие базальтовые утеплители 1 Rockwool 695 ₽
2 Hotrock Smart 302 ₽
Лучшие пенополистироловые утеплители 1 Техниколь XPS Техноплекс 1 100 ₽
2 Пеноплэкс Комфорт 980 ₽
Лучшие пенопластовые утеплители 1 Knauf Therm Дом 890 ₽
2 ПСБ С 15-О 1 688 ₽
Лучшие стекловолоконные утеплители 1 Isover Теплый Дом 660 ₽
2 Ursa Geo 800 ₽
Лучший утеплитель из полиэфирного волокна 1 Шелтер ЭкоСтрой ШЭС арктический 1 780 ₽

Какой утеплитель лучше для потолка

Существует несколько способов потолочного утепления: сверху (с чердака) или снизу (с комнаты). Основных видов утеплителей для такой работы пять:

Вата минеральная Обладает толщиной от 20мм до 200 мм, продается в тюках или рулонах, может иметь одну фольгированную сторону для улучшения теплоизоляционных свойств.
Пенополиэтилен фольгированный Толщина от 1мм до 20мм, рулоны в ширину 1м. Эффективен, может использоваться вторым слоем к минвате для увеличения мощности термобарьера.
Пенопласт Продается квадратами со сторонами в 1м и толщиной от 20мм до 100мм. Плотность колеблется от 15кг/кв.м. до 25кг/кв.м. Применяются в виде промежуточного утеплителя перед установкой подвесных и навесных каркасов или как черновая основа перед шпатлеванием потолка.
Полиплекс Представлен в виде листов 120см х 60см, толщиной от 10мм и до 200мм, разнообразного цвета и со специальными фасками для укладки. Большим спросом пользуется продукция с плотностью 35 кг/м.кв. или 45кг/м.кв. Применяется как черновое покрытие перед шпатлевкой.
Керамзит Имеет пористую структуру, небольшой вес, овальную форму. Ним засыпается пол чердака, чтобы получилась тепловая подушка под стяжку.

Утепление потолка сверху

Для чердака подходят любые утеплители, тем более их крепить не нужно. Они плотно укладываются на поверхность, чтобы не оставалось зазоров и щелей, через которые будет уходить тепло. Подойдут для этих целей не слишком дорогая продукция, лишь бы теплоизоляционные свойства были на высоте. Основными утеплителями являются минеральная вата и керамзит.

Утепление потолка снизу

Обязательно нужно позаботиться о подвесном каркасе либо специальных креплениях, так как работы по крепежу осуществляются на весу. Легче всего заполнить термоизоляционным материалом пустоты между основой и подвесным потолком. Можно использовать и подвесы П-образной формы. При этом утеплитель продевается внутрь устройств, а после устанавливаются профили из дерева или металла. Но этот способ подойдет лишь в том случае, когда высота потолка позволяет их уменьшать за счет опускания каркаса.

Как рассчитать толщину утепления крыши и чердака

Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.

Достоинства и недостатки утеплителей

  1. Пенополиуретан – на сегодняшний день самый эффективный утеплитель.
    Виды ППУ

Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.

Недостатки: дороговизна материала, неустойчивость к УФ-излучению.

  1. Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.

Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.

Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.

  1. Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.

Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.

Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.

  1. Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.

Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.

Недостатки: более высокая стоимость, по сравнению с аналогами.

  1. Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.

Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.

Недостатки: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.

  1. Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.

Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.

Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.

  1. Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.

Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость, негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.

Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.

Расчет утепления каркасного дома

При выполнении расчетов на требуемую теплоизоляцию каркасного дома (без капитальных стен) следует учитывать отсутствие базовой конструкции, имеющей собственную сопротивляемость теплопотерям. В расчете учитываются такие нюансы:

  • материал каркаса – дерево или металл. Во втором случае следует учитывать возникновение «мостиков холода» и их устранение;
  • компоновку здания, возможность применения шовных или бесшовных материалов;
  • заранее принимать во внимание эксплуатационные характеристики облицовочных материалов изнутри и снаружи;
  • выбирать теплоизоляторы с требуемыми параметрами водо-, паро-, ветропроницаемости.

Ниже представлены иллюстрации с вариантами теплозащиты каркасного строения.

Упрощенный тип
Более сложный, но и более эффективный способ утепления.

Ещё немного советов, которые упростят работу

Расчет теплозащищенности дома или нежилого строения, выбор способа монтажа теплоизолирующих материалов и предпочтение типа материала – сложный и требующий учета многих факторов вопрос. Для непрофессионала такой расчет очень сложен, в том числе за счет поиска необходимой информации по используемым материалам.

Заметно упростит работу использование специального программного обеспечения, в наиболее простом варианте – онлайн-калькуляторов для расчета толщины теплоизолирующего слоя. При их использовании следует учитывать, что большая часть калькуляторов разрабатывается производителями средств для теплоизоляции и ориентированы на их продукцию. Соответственно, данных по товарам других производителей может не быть или же информация может содержать неточности.

Из программного обеспечения, помимо калькуляторов, можно рекомендовать Revit компании AutoDESK, а также расчеты в Exel.

Правильно и рационально утепленный дом позволяет сократить расходы на отопление до 50%, а разумная конструкция на стадии строительства – создать не просто пассивный (потребляющий незначительное количество энергии), а активный – имеющий положительный годовой баланс энергии. Тем самым при высокой начальной стоимости строительства (в том числе значимых расходах на теплоизолирующие материалы и энергосберегающие конструкции) окупаемость такого строения будет удачно дополнена сохранением экологической обстановки и комфортными условиями проживания.

Правила монтажа минераловатных плит

Подготовка к установке плит или рулонов из минеральной ваты включает ряд процедур, среди которых следует выделить:

  1. Очистку поверхностей от следов плесени при помощи строительного шпателя, при необходимости проведение обработки поверхности антисептиком.
  2. Заделку ямок и трещин, проводимая при помощи цементного раствора, заделка пустот, имеющих большую глубину при помощи монтажной пены и пакли.
  3. Обработку при помощи антисептических препаратов и грунтовки, при этом важно выдерживать рекомендуемое время между нанесением различных слоев для того, чтобы у каждого из них было время подсохнуть.
  4. На последнем этапе подготовке обеспечивается плоскостность поверхности, необходимая для герметичного прилегания к ней утеплителя бескаркасного типа.
  5. После завершения подготовки при помощи клеевого раствора для крепления рулонов наносимого точечным способом обеспечивается создание воздушного зазора.
  6. Начиная с верхней части стены в горизонтальном направлении при помощи мебельного степлера или двустороннего скотча проводится монтаж пароизоляционной пленки к каркасу.
  7. После этого выполняется клейка стыков при помощи строительного скотча или монтажной ленты.
  8. Затем выполняется обрешётка при помощи реек, имеющих ширину около 1,5–2,5 см, необходимая для создания вентиляционного зазора между внутренней облицовкой и слоем пароизоляции.
  9. На следующем этапе отмеривается необходимая длина плиты минеральной жесткой минваты с учетом допуска в пределах 10 см и ее монтаж на поверхность фасада за счет прижатия отогнутыми ушками скоб на каркасе, обеспечивая надежную фиксацию утеплителя в вертикальном положении.
  10. На последнем этапе монтажа выполняется окончательная отделка, например, выполняется установка профилей и производится монтаж листов, из гипсокартона или наносится штукатурка.

Обратите внимание! Строители считают более предпочтительным по сравнению с использованием материала в рулонах применение для отделки вертикальных поверхностей плит из жесткой минваты. Это объясняется отсутствием скатывания утеплителя, однако перед его монтажом рекомендуется предварительно установить в горизонтальном направлении планки для снижения их веса.

Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.

Видео про энергоэффективный дом

Какими бывают габариты материала?

В случае если теплоизоляционный материал очень тонок, сквозь стенку просачивается холод и сырость, но и излишняя толщина также ни к чему.

Стандартными габаритами материала считаются такие:

  • 75 мм;
  • 150 мм;
  • 60 мм;
  • 200 мм;
  • 70 мм;
  • 80 мм;
  • 50 мм;
  • 15 мм.

В случае если слой теплоизоляционного материала меньше положенного хоть на пару сантиметров, стенки станут пропускать холод и отсыревать.

Например, точка росы, которая располагается снаружи сооружения, сместится немного вовнутрь стенки, вследствие того, что теплоизоляционный материал не сможет ее удержать. В итоге – на плоскости стенки станет появляться конденсат, она станет медленно отсыревать, рушиться, будет появляться плесень и грибок.

Очень толстый слой теплоизоляции приведет к неоправданным расходам. Любой хороший хозяин желает построить не просто качественный и надежный дом, но и сэкономить по максимуму, а толстый слой изоляции стоит неплохих денег. Также при большой толщине термоизоляции не соблюдается естественная вентиляция изнутри стенок, вследствие чего внутри здания становится весьма душно и дискомфортно. Кроме того, в случае если утепление выполняется на внутренней части стенки, толстый слой материала заберет весьма большое количество свободного места, уменьшив квадратуру комнаты как визуально, так и физически.

Именно поэтому важно уметь рассчитывать толщину теплоизоляции.

Ещё один весьма значимый момент – определение толщины теплоизолятора зависит напрямую от сырья, из которого изготовлена стенка. Исходя из этой информации, можно сделать вывод о теплопроводимости и теплотехнических свойствах этой части сооружения. Такие данные дают возможность квалифицировать теплоотдачи на любом квадратном метре площади. Абсолютный перечень данных материалов указан в СНиП No2-3-79. Плотность утеплителя бывает разной, но обычно используют от 0,6 – 1000 кг/м3.

В современном строительстве зачастую используют пеноблоки, на которые распространяются определенные требования к термоизоляции:

  • ГСОП – 6000;
  • сопротивление в теплоотдаче и термопередаче стен – свыше 3,5 С/кв. м/Вт;
  • сопротивление в теплоотдаче и термопередаче потолков – свыше 6С/кв. м/Вт.

В случае если вы намереваетесь положить некоторое количество слоев теплоизолятора, характеристики сопротивления теплопередачи рассчитываются в виде суммы всех слоев. При этом нужно принимать во внимание теплопроводимость и свойства материала, из которого приготовлены стенки.

Какие данные понадобятся?

У теплопроводности стен и потолка есть определенные минимальные показатели. Для расчёта необходимо воспользоваться формулами:

  • стена: R=3,6-R;
  • потолок: R=6-R.

После получения числового значения разницы следует вычислить толщину утеплителя по следующей формуле: p = R*k, где р-искомая толщина утеплителя.

При использовании теплоизоляции из пенопласта или минеральной ваты рекомендованное значение – 10 см (в кирпичных домах, а также в домах с панельными стенами, лоджиях, на балконе).

Коэффициент теплопередачи всех материалов стены или иных участков в жилом сооружении определяется отдельно, зависит от разных климатических условий и является индивидуальным:

ГСОП= (tв-tср) x*z, где:

  • tв — средняя температура внутри помещения;
  • tот — средняя температура окружающей среды;
  • zот — длительность отопительного сезона в сутках (если у вас автономное отопление, то принимайте значение, основываясь на личном опыте)

Отзывы пользователей

1: При покупке не обратила внимание на запах от теплоизоляции. После утепления пенополистиролом, в комнату было невозможно войти.

2: Купили эковату, понравилась цена. Оказалось, что она прекрасно защищает наш дом от нежелательного соседства мышей и тараканов.

3: Укладывал базальтовый теплоизолятор между лаг, надевал резиновые перчатки и респиратор. Отходов почти не осталось, в отличие от стекловаты. Раскрой выполнял обычным ножом.

Таким образом, для выбора оптимального утеплителя для той или иной конструкции необходимо найти наилучшее сочетание плотности, массы, теплоизолирующих свойств и, конечно, цены материала. На сегодняшний день на рынке присутствует множество конкурирующих производителей, и каждый из них предлагает различные выгодные варианты, из которых потребитель может выбрать наиболее подходящий для себя.

admin

Поadmin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *